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We study the algebraic decay of the survival probability in open hierarchical
graphs. We present a model of a persistent random walk on a hierarchical graph
and study the spectral properties of the Frobenius–Perron operator. Using a
perturbative scheme, we derive the exponent of the classical algebraic decay in
terms of two parameters of the model. One parameter defines the geometrical
relation between the length scales on the graph, and the other relates to the
probabilities for the random walker to go from one level of the hierarchy to
another. The scattering resonances of the corresponding hierarchical quantum
graphs are also studied. The width distribution shows the scaling behavior
P(C) ’ 1/C.

KEY WORDS: Survival probability; algebraic decay; Pollicott–Ruelle resonances;
quantum scattering resonances.

1. INTRODUCTION

Typical Hamiltonian systems are non-integrable and have a mixed phase
space, where regions of regular and chaotic motions coexist. The chaotic
dynamics of mixed systems is clearly different from the fully chaotic case.
This is manifest in the behavior of the survival probability in open systems.
Assume we have an infinite hierarchy of Kolmogorov–Arnold–Moser

(KAM) small islands interspersed in a connected chaotic region, and
suppose we draw a boundary at a given level of this hierarchy, such that
the particles leaving this boundary are lost. Consider a large initial number
N0 of randomly chosen (with respect to a given probability distribution)



initial conditions in the chaotic region and let them evolve by the dynamics
up to some time t. The survival probability P(t) is the ratio N(t)/N0 in the
limit of large N0, where N(t) is the number of particles remaining within
the boundary at time t. In the typical case this probability is believed to
decay algebraically,

P(t) ’ t−d. (1)

It has been argued that the algebraic decay is due to the hierarchical struc-
ture of phase space. (1–6) However, despite significant efforts, the mathemat-
ical understanding of the behavior described by Eq. (1) is rather poor. (7)

Much of our current knowledge of this problem is based on the self-similar
Markov chain model, (3, 4) which provides an expression for the exponent d
in terms of the parameters of the model. Yet a precise and simple under-
standing of the mechanism based on dynamical properties is lacking.
In fully chaotic open systems, the survival probability decays expo-

nentially,

P(t) ’ e−ct. (2)

This case is well understood. The evolution operator of the probability
densities, the Frobenius–Perron operator, admits a spectral decomposition
in terms of Pollicott–Ruelle resonances (8) 3 which characterize the relaxation

3Note that the use of the term resonances here is restricted to the logarithms of eigenvalues of
the Frobenius–Perron operator, as opposed to its use in the KAM theory, e.g., as in ref. 6.

properties. In particular, for open systems, the leading resonance is iden-
tified as the escape rate c in Eq. (2), and describes the slowest relaxation
mode of the probability distributions. We point out that in closed systems
an equilibrium state exists (the leading resonance is equal to zero), and one
can study the relaxation to this equilibrium state by considering the next
leading resonance. In contrast, for open systems the final state does not
exist due to the escape, the rate of which is characterized by the leading
resonance of the Frobenius–Perron operator. We refer to ref. 10 for more
details concerning the connection between open and closed systems.
The escape rate can also be interpreted as a macroscopic quantity

resulting e.g., from a diffusion process described by a Fokker–Planck
equation for the macroscopic density of particles. This connection between
microscopic dynamics and macroscopic processes, known as the escape rate
formalism, (9–13) yields expressions of the transport coefficients, e.g., the dif-
fusion coefficient, in terms of the dynamical quantities. The existence of
this connection relies heavily on the hyperbolic properties of the system,
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i.e., (i) (almost) every point in phase space is assumed to be of saddle type,
and (ii), for the open boundaries, the repeller is fractal.
The absence of an exponential decay rate of the survival probability

for a typical system Eq. (1) is associated to anomalous transport, e.g., in a
diffusive process the mean square displacement grows with a power of t not
equal to 1. With this respect, the connections between macroscopic phe-
nomena and microscopic dynamics are far less understood for typical
systems than they are in the fully chaotic case.
Attempts to describe the relaxation properties of systems with mixed

phase space in terms of spectral properties of the Frobenius–Perron opera-
tor have introduced regularization procedures which amount to truncating
the Frobenius–Perron operator in a finite matrix representation. (14) An
alternative approach (15) considers the presence of a vanishing noise
and yields finite values of the leading relaxation rates. In both these
approaches, it is worthwhile stressing that the relaxation rates are the
analogues of the leading Pollicott–Ruelle resonances mentioned above in
reference to relaxation in fully chaotic systems.
Our purpose in this paper is to understand what properties of the

Pollicott–Ruelle spectrum characterize the algebraic as opposed to expo-
nential decay of the survival probability. We will do so by considering a
model whose finite approximations are fully chaotic, but which displays
algebraic decay of the survival probability as a limiting property.
For the purpose of this endeavor, we propose to investigate the decay

properties of an open one-dimensional hierarchical graph, whose survival
probability turns out to decay algebraically. A graph is a collection of
bonds on which a classical particle has a uniform one-dimensional motion.
The bonds are interconnected by vertices where neighboring bonds meet.
At the vertices, the particle undergoes a conservative collision process with
the result that its velocity may change direction. In practice this collision
process is determined by a random process where outputs are assigned
fixed transition probabilities in terms of the inputs. A hierarchical graph is
one where the lengths of the bonds and the transition probabilities obey
scaling laws. (16)

The specific model we propose to study is based on a one-dimensional
Lorentz lattice gas, (17, 18) the difference being that ours is a continuous time
process where the separation between scatterers will be taken to satisfy a
scaling law. The scattering probabilities depend on the direction of the
particle, in analogy to the Lorentz lattice gas, with the further property
that these probabilities change according to the index of the scatterer. Due
to its connection to persistent random walks, we propose to refer to our
model as a persistent hierarchical graph. In such a system, the evolution
operator for phase space densities, the Frobenius–Perron operator, can be
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written explicitly and its spectral decomposition expressed in terms of the
Pollicott–Ruelle resonances sj. (19) This in turn yields the expression for the
survival probability :

P(t)=C
.

j=0
Aje sjt, (3)

where the amplitudes Aj can be expressed in terms of the eigenstates asso-
ciated to the corresponding resonances. The Pollicott–Ruelle resonance
spectrum is located in the lower half-plane, Re sj < 0. We note that the
Perron–Frobenius operator is here defined on a rigged Hilbert space,
whose dimension is infinite. (10)

It is a general property that finite open graphs are fully chaotic
systems. Indeed there is a gap empty of resonances, i.e., the closest reso-
nance to the imaginary axis is real and isolated, so that it dominates the
sum in Eq. (3). This resonance is the escape rate. Thus in this case the
survival probability decays exponentially as in Eq. (2).
On the contrary, in the semi-infinite open hierarchical graph, because

the lengths of the bonds and the transition probabilities scale in terms of
some parameters (see Section 2.2), we will see that the decay of the survival
probability is algebraic as in Eq. (1). Indeed the power law behavior can
emerge in the limit of infinite graphs from the expression (3), because there
is an accumulation of resonances going to zero and distributed with a par-
ticular density. In fact, if the amplitudes and the decay rates satisfy
Aj=aa j and sj=−bb j with a, b, a and b some real functions of the
parameters of the model (0 < a, b < 1), then, evaluating the sum in Eq. (3)
by the steepest decent method we get the power law decay of Eq. (1) with

Aj=aa j

sj=−bb j
ˇ
S d=

ln a
ln b

(4)

We will show in Section 4 that indeed these scaling behaviors for the spec-
trum sj and for the amplitudes Aj hold for persistent hierarchical graphs.
We further point out a connection between the parameters a and b and the
scaling parameters of dynamical traps: (20, 21) a is the spatial scaling param-
eter and 1/b the temporal one.We will comeback to this in the conclusions.
As already mentioned, every finite size approximation of a persistent

hierarchical graph is a fully chaotic system. This provides means of making
further comparisons between typical and fully chaotic systems. Dynamical
quantities, such as the topological pressure (henceforth referred to as free
energy) will be considered.
Recent studies consider the question how the hierarchical structure

and the dynamics of a typical Hamiltonian system shows up in quantum
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properties. It was shown by a semi-classical argument (22) that Eq. (1) leads
to fractal conductance fluctuations on an energy scale larger than the mean
level spacing. These fractal conductance fluctuations are decorated with
peaks corresponding to isolated resonances at a small energy scale, (16)

which are associated to ‘‘hierarchical’’ states and are distributed according
to p(C) ’ 1/C, with C the width of the scattering resonance in the wave-
number plane, to be defined in Section 6.
Quantum properties of graphs are not without their own interest.

Spectral properties of closed quantum graphs have been considered in
ref. 23 where quantum graphs were introduced for the first time as a model
for quantum chaos. Other spectral properties were considered in refs. 24–26.
Dynamics, (27) scattering (28) and localization in infinite disordered graphs (29)

have also been considered. On the other hand the classical dynamics has
been studied in detail in ref. 30. Here we will also study properties of the
scattering resonances in a quantum realization of the persistent hierarchical
graph.
The plan of the paper is as follows. In Section 2 we discuss general

properties of classical and quantum graphs and introduce the persistent
hierarchical graphs in some detail. The survival probability is defined in
Section 3, where we give its expression in terms of the spectral decomposi-
tion of the evolution operator. Section 4 presents the calculation of the
spectrum of the persistent hierarchical graph. Some properties of the free
energy are studied in Section 5. In Section 6 we turn to the quantum
description of persistent hierarchical graphs and, in particular, analyze the
spectrum of scattering resonances. Finally conclusions and perspectives are
drawn in Section 7.

2. HIERARCHICAL GRAPHS AND OUR MODEL

2.1. General Survey

A graph is a collection of B one-dimensional bonds, connected by
vertices, where a particle moves freely. The position of the particle on the
graph is described by a coordinate xb. The index b refers to a particular
bond and xb to the position on that bond, with 0 < xb < lb, where lb
denotes the length of the corresponding bond. Here we consider oriented
graphs where bonds have directions. Thus to each ‘‘physical’’ bond corre-
sponds two oriented bonds, and therefore the number of oriented bonds is 2B.
In a quantum graph the dynamics of the particle on a bond is

governed by the free Schrödinger equation. When the particle arrives to a
vertex, a scattering process determines the probability amplitude sbbŒ for
being reflected or transmitted to the other connected bonds.
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These systems admit a classical limit which corresponds to a particle
moving at constant velocity on the bonds and undergoing a conservative
scattering process at the vertices (the classical limit of the quantum scatter-
ing process), determined by the probabilities PbbŒ=|sbbŒ |2 of being reflected
or transmitted to other bonds. The classical dynamics is Markovian, i.e.,
there is no memory effect.
Open or scattering graphs, have some infinite leads c, from where a

particle can escape and never return.
Hierarchical graphs are a particular class of graphs consisting of a self-

similar collection of unit cells, which are topologically identical and whose
characteristic lengths follow a given scaling law. In the classical case, the tran-
sition probabilities are taken to satisfy a scaling property, such as in a con-
tinuous self-similar Markov chain.(3) A possible example is given by a random
walk on a fractal support, such as the Sierpinsky gasket, where scattering
probabilities change according to the level (with respect to the fractal structure)
of the vertices. A simple such example is the persistent hierarchical graph we
introduce below. Other examples are the quantum version of the chain
model,(16) or the Cayley tree for quantum conduction.(31–33)

2.2. Persistent Hierarchical Graph

The hierarchical graph that we consider is a semi-infinite one-dimen-
sional lattice where the lengths of the bonds decay exponentially with the
bond index. On this lattice, a random walker moves on the bonds with
constant speed, so that the time between collisions becomes exponentially
shorter as the walker moves deeper into the lattice. Moreover, at each
vertex, the walker undergoes a random collision which reverses its direction
with some probability qn, which depends on the index n of the scattering
vertex, or keeps the direction of the walker unchanged with probability pn.
We will label by n the (non-directed) bond between vertices n and n+1.
A directed bond b is either (n,+) or (n, −). In terms of those, the following
transitions PbbŒ of going from bŒ to b are possible :

bŒ=(n,+)0 ˛b=(n+1, +), with probability P(n+1,+), (n,+)=pn+1,
b=(n, −), with probability P(n, −), (n,+)=qn+1.

(5)

bŒ=(n, −)0 ˛b=(n−1, −), with probability P(n−1, −), (n, −)=pn,
b=(n,+), with probability P(n,+), (n, −)=qn.

(6)

All the other probabilities are zero.
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The probabilities pn and qn are chosen so as to favor backscattering of
particles as they move deeper into the lattice,

pn=p0en,

qn=1−pn,
(7)

where 0 < e < 1 is a fixed parameter.
We study this infinite hierarchical graph by considering finite approx-

imations made of N+1 vertices with open boundary conditions at both
ends. That is, infinite leads are connected to vertices 1 and N+1 respec-
tively from the left and right. For the length of the bonds ln we assume

ln=l0mn, 1 [ n [N, (8)

where l0 is an arbitrary length scale, which we will set to one, and m,
0 < m < 1, is a (dimensionless) fixed parameter. We note that the total
length of the lattice is LN=l0m(1−mN+1)/(1−m), which is bounded by
l0m/(1−m). A schematic representation of the system is presented in Fig. 1.
Since the particles move with constant speed, in the limit where

NQ. the particles will undergo exponentially more frequent collisions as
they move to the right-most end of the lattice, and will be backscattered
with exponentially increasing probability, hence, in practice, never reaching
the right boundary. The escape is thus expected to be essentially due to exit
from the left boundary for large enough N. Figure 2 shows the results of a
numerical simulation where the number of surviving particles is plotted vs.
time. The power decay is apparent at long times, with an asymptotic
exponent whose value agrees within a few percents with the value to be
derived in Eq. (38). The configuration of the particles surviving after that
time is displayed in Fig. 3. We note that the bonds are more or less equally
populated at the exception of the left-most bonds, which are unpopulated.

Fig. 1. Schematic illustration of the possible transitions and their probabilities for a particle
colliding with a scatterer. The parameter m is here taken to be 1/2. There are a total of
5 bonds and 2 scattering leads in this example.
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Fig. 2. Fraction N(t)/N0 of particles remaining in the system after time t. The system has
25 bonds and N0=100, 000 particles are initially distributed at random positions (i.e., evenly
with respect to the position on the line). The parameter values are e=1/20 and m=9/10.
Each particle is run for a maximal time 106 and escape times are recorded, which yields the
fraction of surviving particles vs. time.
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Fig. 3. Configuration of the fraction of particles surviving after t=106 unit times. About
2/3 of the initial number of particles have escaped after the time considered. The particles
distributed on the bounds with larger indices have essentially retained their initial positions.
The escape occured from bound 1 only.
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As discussed above Eq. (1), the average (with respect to random initial
conditions) of the ratio of the number of particles surviving after a time t
to their initial number N0 defines the survival probability, which we would
like to characterize in terms of the two parameters of the persistent hierar-
chical graph, namely e and m.

3. THE SURVIVAL PROBABILITY

The statistical average of a physical observable A(xb) defined on the
bonds of the graph is given by ref. 30

OAPt=C
2B

b=1

1
lb

F
lb

0
A(xb) r(xb, t) dxb=OA | P̂ tr0P, (9)

where r0 denotes the initial probability density which evolves with the
Frobenius–Perron operator P̂ t to give, at time t, a density r(xb, t) at
position xb on the bond b.
In particular, if we consider the observable A(xb)=lb for the bonds

that compose the finite part of the graph and A(xc)=0, for c a scattering
lead, Eq. (9) defines the survival probability, i.e., the probability of finding
the particle in the interior of the system at a given time t,

P(t)=C
b
F
lb

0
r(xb, t) dxb. (10)

We will henceforth reserve the notation A for this observable. One of our
goals will be to show that this definition can indeed be decomposed as in
Eq. (3).
Since we are interested in the time evolution at long times, we may

consider the spectral decomposition of P̂ t to get an asymptotic expansion
valid for tQ+. of the form

P(t)=OA | P̂ tr0P=C
j
OA |YjP e sjtOỸj | r0P+·· · (11)

as a sum of exponential functions.4 Therefore Eq. (3) is obtained with

4 Possible extra terms such as powers of the time multiplied by exponentials, tm exp(sjt), are
not generic and may appear for particular values of the parameters of the system. See ref. 30
for a discussion of this point.

Aj=OA |YjPOỸj | r0P. (12)
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The spectral decomposition used in Eq. (11) is fully determined by the
solutions of the problem (30)

Q(sj) qj=qj, (13)

which determine the Pollicott–Ruelle resonances sj and the corresponding
eigenstates qj. Q is a 2B×2B matrix with elements given by QbbŒ(s)=
PbbŒe−slbŒ.
Explicit expressions for the scalar products in Eq. (12) were found in

ref. 30. For the right eigenstates,

OA |YjP=C
b
qj[b]

1
lb

F
lb

0
e−sj

xb
vA(xb) dxb, (14)

and for the left eigenstates,

OỸj | r0P=
1

;bœ lbœq̃j[b']g qj[b']
C
b
q̃j[b −]g F

lbŒ

0
e sj

xbŒ
v r0(xbŒ) dxbŒ. (15)

Here qj[b] denotes the b component of the eigenstate qj and q̃
g
j denotes

the complex conjugate of the left eigenvector of Q(sj).
If for the initial density we take r0(xb)=1, for all bonds b, and

r0(xc)=0 for infinite leads c, that is a uniform distribution over the finite
part of the graph, we have

Aj=
1
s2j

;b, bŒ qj(b) q̃
g
j (bŒ)[e

sjlbŒ+e−sjlb−e sj(lbŒ−lb)−1]
;b lbqj(b) q̃

g
j (b)

. (16)

As we will show in Section 4, the Pollicott–Ruelle resonances sj are small
so that we can expand the exponential terms in Eq. (16) and get, to first
order,

Aj=
;b lbqj[b];b lbq̃

g
j [b]

;b lbqj[b] q̃
g
j [b]

. (17)

4. POLLICOTT–RUELLE RESONANCES

According to Eq. (13), the Pollicott–Ruelle resonances sj are the roots
of the following determinant,

det[I−Q(s)]=0. (18)
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In order to write explicitly the matrix Q, we will order the states according
to

(1,+ 1, − 2,+ 2, − · · · N,+ N, −). (19)

This way Q has the expression

Q(s)=R
0 q1e−sl1 0 0 0 · · · 0 0

q2e−sl1 0 0 p2e−sl2 0 · · · 0 0

p2e−sl1 0 0 q2e−sl2 0 · · · 0 0

0 0 q3e−sl2 0 0 · · · 0 0

0 0 p3e−sl2 0 0 · · · 0 0

x x x x x z x x

0 0 0 0 0 · · · qN+1e−slN 0

S . (20)

Since this is a sparse matrix, it is rather straightforward to compute the
determinant Eq. (18),

det [I−Q(s)]=D
N

i=1
di, (21)

where

di=1−qiqi+1e−2sli 51+1
pi
qi
22 1 1
di−1
−126 , i \ 2, (22)

d1=1−q1q2e−2sl1. (23)

Owing to the product structure of Eq. (21), the zeros of Eq. (18) are the
zeros of dN. One can compute them numerically for any value of the
parameters e and m. It should be emphasized that the identification of zeros
in Eqs. (21)–(23) holds only for finite N. However, the numerical resolution
of Eqs. (22)–(23) is limited to small N and, for the sake of proving Eq. (4),
a perturbative approach allows an analytic treatment. This is done in what
follows.

4.1. Perturbation Theory

In order to set up a perturbation scheme, we choose e as our small
parameter and note that the ‘‘unperturbed’’ system, e=0, corresponds to
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the union of N non-interacting bonds. That is, the particles are oscillating
back and forth on the same bond. The spectrum of this unperturbed system
is the union of the sn, m=i

mp
ln
, m ¥ Z, n=1,..., N. The resonances with s ] 0

are not degenerate and remain isolated under the perturbation, even in the
limit NQ.. After the perturbation, each isolated resonance adds one
contribution to Eq. (11), with an sj whose real part is negative and O(E).
Therefore the states associated to them decay exponentially fast (with an
oscillation on top). On the other hand, the resonance s=0 is the only
degenerate unperturbed resonance, with a multiplicity N. As it will turn
out, the perturbation acting on this resonance reduces the degeneracy by
one unit at each order of the perturbation, the splitting being proportional
to E j with j the order of the perturbation. Thus, in the limit NQ., the
spectrum has an accumulation point at s=0. Therefore these states cannot
be considered isolated and their contribution to Eq. (11) must be accounted
for separately from that of the isolated resonances because it becomes an
integral in this limit. This integral accounts for the algebraic decay of the
surviving probability in the long time limit.
Let us discard the isolated resonances and consider only the resonan-

ces sn, 0. The eigenstates associated to the unperturbed system are solutions
of the equation

Q (0)(0) q (0)n =q
(0)
n , (24)

where Q (0) is given by Eq. (20), in which e is set to zero. Explicit expres-
sions for the eigenvectors are:

q (0)1 =
1

`2
R
1

1

0

0

0

x

0

S , q (0)2 =
1

`2
R
0

0

1

1

0

x

0

S ,..., q (0)N=
1

`2
R
0

0

x

0

0

1

1

S . (25)

In order to implement the perturbation theory in powers of e, we
first consider the right eigenvectors. The calculation transposes straight-
forwardly to the case of left eigenvectors. The perturbation theory closely
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resembles the standard perturbation theory for degenerate eigenvalues. (34)

Let us consider linear combinations

q=C
N

i=1
ciq

(0)
i , (26)

where the coefficients ci are polynomials in e, and seek approximate solu-
tions of the system

Q(s) q=q, (27)

where s is a polynomial in e and Q will be expanded to a given order in e.
Writing Q=Q (0)+dQ, we substitute Eq. (26) into Eq. (27). Multiplying
both sides of Eq. (27) by q (0)i , i=1,..., N, and using Eq. (24), we obtain a
system of N linear equations for the coefficients ci, ;N

j=1 Vi, j(s) cj=0,
where Vi, j(s)=q

(0)T

i [Q(s)−Q (0)(0)] q (0)j are the matrix elements of the per-
turbation operator

V1(s)

=
1
2
R −2+e

−sl1(q1+q2) e−sl2p2 0 · · · 0

e−sl1p2 −2+e−sl2(q2+q3) e−sl3p3 · · · 0

0 e−sl2p3 −2+e−sl3(q3+q4) · · · 0

x x x z x

0 0 0 · · · −2+e−slN(qN+qN+1)

S
(28)

The values of s are found by solving the secular equation

det[V1(s)]=0 (29)

to the desired power in e.
Expanding pn and qn in powers of e, we can compute the corrections to

the unperturbed solution. In fact, expanding Eq. (29) up to O(e) we find
that only one eigenstate, s1, 0, has negative real part,

s1, 0=−
p0e
2l1
+O(e2), (30)

while up to this order, the others remain degenerate,

sn, 0=O(e2), n \ 2. (31)
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The eigenvector corresponding to s1, 0 is

q(s1)=q
(0)
1 +O(e). (32)

Hence the degeneracy remains to be lifted among the N−1 remaining
eigenmodes. We study now how the second order correction affects the
degenerate state. We proceed in a similar manner as we did for the first
order. The only difference is that now q (0)1 does not belong to the base of
the degenerate subspace. Accordingly the perturbation operator in this
subspace is represented by the matrix V2=(Vi, j)2 [ i, j [N, which is obtained
from the matrix V1 by removing the first line and first column. Expanding
the equation det[V2]=0 up to O(e2), we get a result similar to Eqs.
(30)–(32) with s2, 0=−p0e2/2l2+O(e3) and q2=q

(0)
2 +O(e3). Proceeding,

the effect of the perturbation at the third order in e must be studied among
the remaining N−2 degenerate states. By induction we thus have a
whole hierarchy of roots, each corresponding to a different order in e and
determined by secular equations involving the corresponding perturba-
tion operator that acts in the still degenerate subspace Vn=(Vi, j)n [ i, j [N
expanded up to O(en). It is clear that, at any given order of the perturba-
tion theory, the resonances which are not anymore part of the degenerate
subspace will have further corrections to their values. However we do not
need to take them into consideration since we are only interested in the
leading contributions to every resonance of the spectrum. In fact we can
prove the

Proposition 4.1. The N roots of Eq. (18) can be approximated to
order N in e by s1, 0,..., sN, 0, where, for every 1 [ n [N, sn, 0 is the only root
of order en of the secular equation

det[Vn(s)]=0, (33)

with leading contribution

sn, 0=−
p0en

2ln
+O(en+1). (34)

The corresponding right-eigenvector q, Eq. (26), has coefficients cn,..., cN
which are the solutions of the linear system

C
N

k=n
Vj, k(sn, 0) ck=0, j \ n, (35)
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Left-eigenvectors q̃ have coefficients determined by

C
N

j=n
Vj, k(sn, 0) cj=0, k \ n. (36)

We will not discuss the states associated to sn, m (m ] 0), which are
exponentially decaying states and play a role only at the early stages of the
dynamics.
From Eqs. (35) and (36) it is easy to show that to the leading order we

have

qn=q̃n=q
(0)
n +O(en). (37)

4.2. Algebraic Decay

According to Proposition 4.1, the resonances sn, 0 are O(en) and there-
fore accumulate to s=0 as n becomes large, thus proving what we
promised. Equation (17) together with Eq. (37) and the expression of the
unperturbed eigenvectors, Eq. (25), allow us to evaluate the leading con-
tribution to Aj: Aj=2m j+O(e), where we have substituted lj=l0m j and
l0=1.
Turning back to Eq. (4), we have shown that the decay is algebraic as

in Eq. (1) with

d=
1

ln e/ln m−1
. (38)

We point out as a conclusion to this section that both parameters of
the persistent hierarchical graph, E and m, are necessary to grant the alge-
braic decay of the survival probability. This point will be further discussed
in the conclusions. In what follows we will derive further properties of the
persistent hierarchical graphs, first classical and then quantum.

5. THERMODYNAMIC FORMALISM

For the real time process we consider, the free energy (usually referred
to as topological pressure) per unit time is defined in analogy to continuous
time processes where the stretching factors are here replaced by the inverses
of the transition probabilities at the vertices of the graph: (30)

F(b)= lim
TQ.

1
T
lnZT(b), (39)
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where the dynamical partition function

ZT(b)=C
bT

[Pb0b1 · · ·Pbn−1bn]
b (40)

is the sum over all trajectories of time length T (or equivalently length
L=vT) of their respective probabilities raised to the power b, with b > 0
playing the role of an inverse temperature. We note that the length of the
trajectories cannot be measured sharply because of the continuous time
nature of the system. Rather the sum in Eq. (40) should be understood as a
sum over all trajectories whose lengths are within an interval T±Dt, where
Dt is fixed. In the infinite T limit, the value of Dt is irrelevant.
Some properties of the free energy, are: (11) (i) F is a monotonically

decreasing function of b; (ii)F has a zero for some b=dH, 0 < dH < 1 (the
strict inequality being due to the open boundaries), where (iii) dH is the
fractal dimension of the repeller with respect to a properly defined metric
space (in the sense that the space of trajectories is a continuum where
trapped trajectories form a subset with fractal dimension); (iv) for hyper-
bolic systems of one degree of freedom, −FŒ(dH) is the value of the posi-
tive Lyapunov exponent on the space of trapped trajectories; (v) −F(1)
measures the rate of escape from the system; (vi) the difference between
these last two quantities is the metric (Kolmogorov–Sinai) entropy on the
repeller, hKS=F(1)−FŒ(dH); and (vii) F(0) — hTOP is the topological
entropy.
As argued in ref. 30, the free energy Eq. (39) can be obtained as the

leading zero of the following zeta function z(s, b)=det[I−Qb(s)], where
Qb is identical to the matrix Q defined in Eq. (20), with the probabilities qi
and pi now raised to the power b. Thus the free energyF(b) is the leading
solution s of the expression <i di=0, where i takes values on the set of
bonds and the di are determined by the recurrence relation

di=1−q
b
i q
b
i+1e

−2sli 51+1pi
qi
22b 1 1

di−1
−126 , (41)

d1=1−q
b
1q
b
2 e
−2sl1. (42)

We prove the following asymptotic behaviors :

Proposition 5.1. In the limit of large b, the free energy F is linear
in b with a coefficient exponentially small with respect to the number of
bonds in the system, N,

lim
bQ.

F(b)=−b
1+e
2
1 e
m
2N. (43)
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The proof of this result follows by considering the probability of a
particle bouncing off a given bond n for a time T. Let WT(n) be this
probability. We have

WT(n)=[qnqn+1]T/2m
n
,

=51−1+e
2
1 e
m
2n+O 1 e

2

m
2n6T. (44)

Thus the ratio

WT(n)
WT(n−1)

=51+1+e
2
11− e

m
21 e
m
2n−1+·· · 6

T

> 1 (45)

is larger than 1, which implies that, as bQ., the free energy is dominated
by particles bouncing off the last bond, i.e., F(b) % limT (1/T)
ln[WT(N)b]. Equation (43) follows.

Proposition 5.2. When b tends to zero, the free energy F has a
limit independent of e, given by limbQ 0 F(b)3

1
m
N [1+O(m)]. Thus in the

limit of large number of bonds N, the free energy has a singular limit,
limNQ. F(0)=..

0 5 10 15 20 25 30

N

0.1

1

10

h T
O

P

µ=0.9
µ=0.8
µ=1

Fig. 4. Topological entropy vs. N for three different values of m: m=1 (solid line), 9/10 (dot-
dashed line) and 8/10 (dashed line). The two dotted curves are proportional to 1/mN.
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This holds since the rate of creation of new trajectories per collision is
the same at every site, while the rate of collision per unit time increases
exponentially as the particles go deeper into the lattice. Hence the topolog-
ical entropy is overwhelmingly dominated by particles bouncing off the
right-most bond. In particular, the reason for its diverging with NQ. is
due to the existence of trajectories undergoing an infinite number of
collisions in a finite time, e.g., the trajectory ever moving to the right.
Numerical evidence for Proposition 5.2 is shown in Fig. 4.
We close this section with the observation that, in the infinite system

limit, we expect the free energy to have a phase transition at the value
b=1. This should result from the asymptotic behaviors of the free energy
discussed in Propositions 5.1 and 5.2. In the limitNQ., by Proposition 5.1,
the free energy is zero for every b > 1 since it is zero at bQ.. On the
other hand, by Proposition 5.2, it diverges as bQ 0, and thus must
decrease steeply for 0 < b < 1. We thus infer that matching the two curves
at b=1 results in a discontinuity of one of the derivatives ofF.

6. THE QUANTUM HIERARCHICAL GRAPH

In this section we wish to explore the possibility of having a scaling
relation for the widths of the resonances, as was suggested in ref. 16.
Numerical analysis of the time evolution of quantum systems as considered
in refs. 27 and 36 is possible for a finite system, but goes beyond our scope.
Thus we consider a quantum system whose classical limit is the one defined
in Section 2.2. The quantum system is a linear chain with transition and
reflection probability amplitudes

˛s(n+1,+), (n,+)=`pn+1 ,s(n, −), (n,+) =i`qn+1 ,

s(n−1, −), (n, −)=`pn ,

s(n,+), (n, −) =i`qn ,

(46)

with pn and qn defined as in Eq. (7). sbbŒ=0 for all other possibilities. It is
clear that at each vertex the scattering matrix is unitary and therefore the
quantum problem is well defined. Moreover we have that PbbŒ=|sbbŒ |2

which shows (27) that the classical limit of this quantum problem is indeed
given by Eqs. (5) and (6).
The time evolution of a wave packet in an open system is controlled

by the scattering resonances defined in the complex plane of wavenumbers
k as the poles of the scattering matrix. For a quantum system, denoting
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the wavefunction by k(xb, t), we can write the survival probability as:
PQM(t)=;b > dxb |k(xb, t)|2. Letting k(xb, t)=;r cr(xb) e−iErt, where cr(xb)
are determined by eigenstates of the evolution operator with complex
eigenvalues Er, we can rewrite the survival probability as follows :

PQM(t)=C
r, rŒ
crcrŒe i(Er − ErŒ) te−(Cr+CrŒ) t/2, (47)

where we have used the decomposition Er=k
2
r=Er−iCr/2.

Since for short times the quantum evolution follows the classical
one, it is interesting to study the distribution of scattering resonances in
hierarchical graphs and look for manifestations of the algebraic decay
in a quantum spectrum. Hufnagel et al. (16) showed, in the framework of a
quantum version of the chain model, that the distribution p of the width
C=−4 Re k Im k of the quantum scattering resonances k satisfies p(C) ’
1/C, C° 1. Moreover, using an argument based on perturbation theory,
they argued that the imaginary parts of the quantum scattering resonances
satisfy a scaling relation.
Given a scaling relation for the resonance widths, Ci=f i, the widths

distribution follows:

p(C)=C
i
d(Ci−C) % F d(fx−C) dx ’

1
C

(48)

This distribution has been associated to peaks that decorate fractal
conductance fluctuations observed in energy scales larger than the mean
level spacing. But since the width and height of the peaks in the conduc-
tance are determined by the imaginary part of the scattering resonances,
the scaling behavior of the resonance widths is also contributing to the self
similar, i.e., fractal, shape of the conductance.
The scattering resonances are the zeros of the zeta function det[I−R(k)],

with the matrix R(k) obtained by replacing s by ik and PbbŒ by sbbŒ in
Eq. (20). As for the classical resonances, we can develop a perturbative
approach in order to determine the quantum resonances and the corre-
sponding eigenstates, R(k) f=f.
As opposed to the classical case, the zeroth order resonances are gener-

ally non-degenerate. Indeed a straightforward calculation of det[I−R(k)]
with e=0 yields the roots

k (0)n, p=
(2p+1) p
2ln

, p ¥ Z. (49)
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Similarly to Eq. (25), the eigenvector corresponding to kn, p is given by

fn, p=(0 · · · 0 1 (−1)p
{2n−1 2n

0 · · · 0). (50)

Unless m=1, the zeroth order quantum resonances are all isolated,
whereas, for m=1, k (0)n, p=(2p+1) p/2 is independent of n, so that, for
every different p, the resonances have an Nth order degeneracy. We
consider the two different cases separately.

6.1. Non-Hierarchical Graph: m=1

For m=1, the situation is similar to Section 4. We can proceed by
analogy and show the following

Proposition 6.1. For equally inter spaced scatterers, i.e., m=1, the
quantum resonances are given by

kn, p=
(2p+1) p
2

−i
p0en

4
+O(en+1), p ¥ Z (m=1). (51)

Thus, for every integer p, the kn, p satisfy a scaling law and we have an
accumulation point at (2p+1) p/2. Since the inverse of the lifetime is
C=−4 Re k Im k and v=2 Re k is identified with the speed of the particle
we have that Cn, p=v

p0
2 e
j=sj.

This result shows that asymptotically the classical and quantum life-
times of the resonances with longest lifetime coincide in the graph with
evenly inter spaced scatterers (m=1). This is in opposition to fully chaotic
graphs where the strict inequality is satisfied c > Cmin. (37) However there is
no algebraic decay in this case.

6.2. Hierarchical Graph: m ] 1

The case m ] 1 is trickier. Indeed, one expects that the lowest order
correction to kn, p is O(en), but it can only be determined in the perturbation
theory provided we know the n−1th order correction to the roots knŒ, pŒ
with nŒ < n, as well as the corresponding eigenvectors. In the remaining of
this section, we will outline the derivation of the first order resonances and
their eigenvectors and present in Table I the results of a computation of
kn, p to fourth order of perturbation theory.
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Table I. Quantum Resonances up to Fourth Order in e. The Zeroth Order Reso-

nance k (0)
n, p Is Here Written Modulo 2p/mn. Notice that the Second Order Correction

to k 2, p Is Purely Real. The Same Holds for the Third and Fourth Order Corrections to

k3, p. This Suggests that the Imaginary Parts of kn, p Are O(e2n−1)

n p O(e0) O(e1) O(e2) O(e3)

1 1
p

2m
−
ip0
4m

−
ip0[2−2e ipm+p0+e ipmp0]

8[1+e ipm] m
−i
[1+e ipm]2 p30−3e

ipmp20m
12[1+e ipm]2 m

1 0 −
p

2m
−
ip0
4m

−
ip0[−2+2e ipm+p0+e ipmp0]

8[1+e ipm] m
−i
[1+e ipm]2 p30−3e

ipmp20m
12[1+e ipm]2 m

2 1
p

2m2
0 i

[−1+e ip/m] p0
4[1+e ipm] m2

−i
−[1+e ip/m]2 [−1+e ipm] p0+e ip/m[1+e ipm] p

2
0

4[1+e ip/m]2 [1+e ipm] m2

2 0 −
p

2m2
0 −i

[−1+e ip/m] p0
4[1+e ipm] m2

−i
[1+e ip/m]2 [−1+e ipm] p0+e ip/m[1+e ipm] p

2
0

4[1+e ip/m]2 [1+e ipm] m2

3 1
p

2m3
0 0 i

[−1+e ip/m] p0
4[1+e ip/m] m3

3 0 −
p

2m3
0 0 −i

[−1+e ip/m] p0
4[1+e ip/m] m3

4 1
p

2m4
0 0 0

4 0 −
p

2m4
0 0 0

n p O(e4)

1 1 −i
[1+e ipm]3 p40−2[−1+e

ipm] p20[1+e
2ipm−2e ipm(−1+m)]+e ipmp30[−2+e

ipm(−2+m)−m] m
16[1+e ipm]3 m

1 0 −i
[1+e ipm]3 p40+2[−1+e

ipm] p20[1+e
2ipm−2e ipm(−1+m)]−e ipmp30[2+e

ipm(2+m)−m] m
16[1+e ipm]3m

2 1 i
p20[−2m+(4−2m−p0m) e

ip/m−(4−p0m+3p0m) e2ip/m+2me3ipm]
16[1+e ip/m]3 m3

2 0 −i
p20[−2m+(4−2m+3p0m) e

ip/m−(4−p0m−p0m) e2ip/m+2me3ipm]
16[1+e ip/m]3 m3

3 1 i
[−1+e ipm] p0
4[1+e ipm] m3)

3 0 −i
[−1+e ipm] p0
4[1+e ipm] m3)

4 1 i
[−1+e ip/m] p0
4[1+e ip/m] m4

4 0 −i
[−1+e ip/m] p0
4[1+e ip/m] m4
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In order to find the solution of R(kn, p) fn, p=fn, p, we will write again
R(kn, p)=R (0)(k (0)n, p)+dR(kn, p). Upon expanding the eigenvectors fn, p in
terms of the basis spanned by the zeroth order eigenvectors f (0)n, 0 and f

(0)
n, 1,

fn, p=;N
m=1 ;q=0, 1 cn, p, m, qf

(0)
m, q, we will make use of the property that f

(0)
m, q

is an eigenvector of R (0)(k (0)n, p), R
(0)(k (0)n, p) f

(0)
m, q=Ln, p, m, qf

(0)
m, q, with eigenvalue

Ln, p, m, q=(−1)q i exp[(−1)p+1 ipmm−n/2]. The first order correction to k
(0)
n, p

is the solution k (1)n, p of the equation f
(0)T

n, p dR(k
(0)
n, p+ek

(1)
n, p) f

(0)
n, p=0, where dR

must be expanded to first order in e. The only non-zero first order correc-
tions have n=1, cf. Table I. The corresponding corrections to the zeroth
order eigenvectors are given by

cn, p, m, q=
1
e

f (0)m, q
TdR(k (0)n, p+ek

(1)
n, p) f

(0)
n, p

1−Ln, p, m, q
, (m, q) ] (n, p), (52)

which are different from zero for (m=1, q=1−p) and (m=2, q=0, 1).
One can proceed to higher orders along these lines. The results for kn, p are
presented in Table I up to fourth order. We note that our results suggest
that the imaginary parts of the kn, p are O(e2n−1). Given that the distribution
of the real parts of the kn, p is rather uniform, this imply that the widths C
scale identically to the imaginary parts of the scattering resonances. Hence
Eq. (48) seems to hold for this example.

7. CONCLUSIONS

We have presented a simple model of an open hierarchical graph for
which an analytical treatment of the algebraic decay of the survival prob-
ability is possible. The novelty of our approach lies on the successful
application to the persistent hierarchical graph of a formalism originally
developed in the framework of fully chaotic systems, where the survival
probability decays exponentially.
For the classical system, the computation of the survival probability

was done using the spectral decomposition of the evolution operator. We
showed that the algebraic decay relies in an essential way on the scaling
properties of both the Pollicott–Ruelle resonances and their amplitudes.
Using a pertubative approach we argued that the resonance spectrum has
an accumulation point at the value zero, which is characterized by a scaling
property in terms of powers of the expansion parameter. The structure of
the corresponding eigenstates with respect to the length scales of the system
yields the scaling of the amplitudes.
This result must be contrasted to the observation of algebraic decay in

the self-similar Markov chains. (3, 16) Although the exponents are identical,

798 Barra and Gilbert



the hierarchical graph is a dynamical process where randomness is involved
only through the modelization of the collisions with scatterers, as opposed
to self-similar Markov chains where transitions between states lack the
spatial structure of our system. In the persistent hierarchical graph, the
geometric role of the parameter m is very clear, whereas in the self-similar
Markov chains, m represents an area which affects the transition probabilities
between states.
As already pointed out in the introduction, the parameters E and m

define a hierarchical dynamical trap, (20, 21) in the sense that m is the ratio
between successive length scales and m/E the ratio between the correspond-
ing staying times. Our result Eq. (38) is another instance of the relation of
these parameters to the transport properties of the system, in this case the
algebraic decay that characterizes the survival probability. It would be
interesting to know what relation does this bear to the transport exponent
of anomalous diffusion.
Other aspects of the properties of the classical persistent hierarchical

graph were studied through the application of the thermodynamic for-
malism. We computed the free energy (or topological pressure) per unit
time in terms of the leading zero of a zeta function defined in analogy to
discrete time systems. Different asymptotic regimes were studied. In par-
ticular, the topological entropy, which is the infinite temperature limit
(bQ 0) of the free energy, increases exponentially with the number of
bonds in the graph. In the limit of large number of bonds, the low temper-
ature (b± 1) free energy tends to zero exponentially with respect to the
ratio e/m < 1. Moreover these results suggest that the free energy
undergoes a phase transition at b=1.
For the quantum system, we used methods similar to the classical case

and conjectured that the widths of the quantum scattering resonances
follow a scaling law, in agreement with the numerically observed width
distribution. (16) This argument was motivated by the computation of the
resonances to the first few orders in perturbation theory. The limitation of
this result, due to the complexity of the resolution of the quantum problem,
illustrates the gap that separates the understandings of the classical and
quantum approaches. The resolution of this question is open to future
research by Bob Dorfman and others.
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